Matrices of Optimal Tree-Depth and a Row-Invariant Parameterized Algorithm for Integer Programming
نویسندگان
چکیده
A long line of research on fixed parameter tractability integer programming culminated with showing that programs $n$ variables and a constraint matrix dual tree-depth $d$ largest entry $\Delta$ are solvable in time $g(d,\Delta){poly}(n)$ for some function $g$. However, the is not preserved by row operations, i.e., given program can be equivalent to another smaller tree-depth, thus does reflect its geometric structure. We prove minimum row-equivalent equal branch-depth matroid defined columns matrix. design algorithm computing matroids represented over finite field tree-depth. Finally, we use these results obtain an running $g(d^*,\Delta){poly}(n)$ where $d^*$ matrix; cannot replaced more permissive notion branch-width.
منابع مشابه
A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study
A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملAn Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
متن کاملEstimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used...
متن کاملParameterized Integer Quadratic Programming: Variables and Coefficients
In the Integer Quadratic Programming problem input is an n× n integer matrix Q, an m × n integer matrix A and an m-dimensional integer vector b. The task is to find a vector x ∈ Z minimizing xQx, subject to Ax ≤ b. We give a fixed parameter tractable algorithm for Integer Quadratic Programming parameterized by n+α. Here α is the largest absolute value of an entry of Q and A. As an application o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 2022
ISSN: ['1095-7111', '0097-5397']
DOI: https://doi.org/10.1137/20m1353502